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Synopsis 

Values of the tensile compliance D for polymers ranging from hard plastics to rubbers have been 
estimated using a commercial thermomechanical analyzer in a novel manner. By slight modification 
of the standard instrumentation together with careful attention to experimental procedure, sample 
geometry, and data analysis, the values of D obtained for a wide variety of materials are shown to 
correlate well with values of the tensile modulus E obtained using more conventional techniques. 
The method appears to be capable of quickly and easily estimating values of D-' ranging from 
to 5 x 109 pascals. 

INTRODUCTION 

Hardness testsl-4 are among the most common techniques used to evaluate 
plastics and rubbers.5 Most hardness tests are attempts to obtain relative values 
of the tensile modulus E for various materials by setting up arbitrary hardness 
scales defined by the particular method used. Unfortunately, the various 
techniques usually rank the hardness of polymers in somewhat different  order^.^ 
For elastomers attempts have been made to quantitatively relate hardness scales 
to tensile modulus,2 but these are usually based on empirical relationships? The 
appeal of most hardness tests is the ease with which the data are obtained, the 
simple sample geometry, and the relatively inexpensive equipment required. 
More quantitative methods of measuring E, for example, stress-strain curves 
or dynamic mechanical measurements, usually lack a number of the above ad- 
vantages. It would be desirable to have a method which incorporated the better 
features of the hardness testing methods but at the same time led to more 
quantitative and reliable values of either tensile modulus E or tensile compliance 
D for both plastics and rubbers. The purpose of this paper is to show that this 
objective can be accomplished utilizing a commercial thermomechanical analyzer 
(TMA) in a novel manner. 

In recent years a number of researchers have attempted to use TMAs to esti- 
mate values of D or E for both hard plastics and rubbery materials. Riga7, using 
a cylindrical indentor, obtained fair agreement between values of modulus cal- 
culated from his TMA results and values of modulus measured from creep and 
stress-strain experiments. The equation used was an oversimplification of the 
indentation geometry. In addition, the analysis ignored instrumental compliance 
corrections which may have been important for the high-modulus materials 
studied. Machin and Rogerss obtained reasonable agreement between time- 
dependent creep compliance data and time-dependent TMA penetration com- 
pliance data in a limited study of two polymers above their softening points. 
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They did not, however, consider in detail the potentially important complication 
of finite sample height. This effect can cause substantial corrections in calcu- 
lated modulus v a l u e ~ . ~ J ~  Hwo and Johnson'l considered the finite sample height 
corrections in their study of two elastomers. They obtained nonlinear results 
(modulus changed with loading) using a theoretical equation which only holds 
for a linear material. 

In the present work the emphasis has been on seeing whether modified pro- 
cedures could be developed such that reliable mechanical parameters could be 
estimated from a TMA. A novel approach evolved which allows quick estimates 
to be made of the tensile compliance of polymeric materials ranging from hard 
plastics to typical rubbers. The method utilizes numerous changes in the ex- 
perimental procedure and the data analysis. For high-modulus materials ac- 
count is taken of corrections for instrumental compliance. For low modulus 
materials careful attention is paid to sample height to ensure that corrections 
due to noninfinite sample thickness are small. In addition, linearity of all 
samples is checked to guarantee that the linear theoretical equations are ap- 
propriate. The theoretical background of the method is briefly summarized 
below. 

t 
I 

H 

THEORY 
In this study a loaded spherically tipped quartz probe of radius R is used to 

indent the various polymeric samples. A schematic of the pertinent geometry 
and parameters of interest is shown in Figure 1: Ds and DQ are values of the 
tensile compliance for the sample and for quartz, respectively; vs and UQ are 
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Poisson's ratios for the sample and for quartz, respectively; W is the weight on 
the probe; H is the height of the sample; and p is the interpenetration distance 
which is equal to R + H - L, where L is the distance from the bottom of the 
sample to the origin of the radius of the hemispherical tip (Fig. 1). The general 
theory for the interpenetration of infinite elastic bodies has been reviewed by 
Timoshenko.12 For infinite H,  the equation appropriate to the geometry of 
Figure 1 is 

2 1 - us - 1 _ -  

In samples where DS >> DQ, for example, elastomers, eq. (1) reduces to one of 
the well-known Hertz relationships: 

n 
3 
- (1 - "3)W 

(2) 
1 4  

Equations (1) and (2) are, however, invalid for samples of finite H .  Vorovich 
and Ustinov13 generalized eq. (2) by solving the mathematical problem for an 
elastic layer of finite thickness resting on a rigid half-space. Assuming no friction 
between the sheet and the half-space, they obtained an equation for p which can 
be revertedlO to give 

_ -  - 
Ds R1/ZP3/2 

3 
- (1 - "3)  WR 

1 4  
DS H3 

[F112 + 0.252F + 0.1588F3/2 + 0.2405F2 _-  - 

+ 0.3149F5/2 + 0.4486F3 + 0.7695F7l2 + - - (3) 
where F = Rp/H2. With the seven terms shown, this equation is valid for F 5 
0.2. It is easy to see that eq. (3) reduces to eq. (2) for large H .  Equation (3) 
differs slightly from Finkin's resultlo because of an apparent error in his reversion. 
The more general case of finite H when Ds is comparable to DQ has been treated 
by Kerr.14 For the high-modulus materials studied in this paper, the experi- 
mental conditions were such that these finite-H corrections to eq. (1) were un- 
necessary. In addition, for the lower-modulus materials, the experimental pa- 
rameters were carefully chosen such that F was always less than 0.001. This 
means that the finite-H corrections given in eq. (3) were unimportant, and hence 
eq. (2) was appropriate for Ds >> DQ. 

Equations (1) and (2) hold for the equilibrium penetration of an elastic ma- 
terial but do not explicitly allow for time-dependent effects. Since few materials 
have no time-dependent, effects, practical application necessitates restating these 
equations in terms of time-dependent compliances. Lee and Radock15 showed 
that for small penetrations of spherical indenters, the time-dependent creep 
compliance in shear, J ( t ) ,  can be calculated from the time-dependent penetration 
p(t). We can substitute 2(1 + us) times the tensile compliance D ( t )  for J ( t ) ,  
obtaining the more general forms of eqs. (1) and (2): 

1 - v g  -- - 1 
(4) 
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3 
1 4  

- (1 - Y$)W 

R 1/2p( t ) 3 / 2  
(5) 

These equations will be used below to derive equations appropriate to the ex- 
perimental procedure of this paper. Note that in general us will also be time 
dependent; this effect is usually small and will be ignored in the present 
paper. 

-- - 
D (t  ) 

EXPERIMENTAL 

Apparatus 

The thermomechanical analyzer used for the present studies is the Model 
TMS-1 manufactured by Perkin-Elmer (Norwalk, Conn.). A schematic diagram 
of this apparatus is shown in Figure 2. The quartz probe which indents the 
sample is coupled through an LVDT core to a weight tray. The maximum mass 
which can be added to the weight tray is 0.2 kg corresponding to a weight of 1.96 
newtons. The LVDT senses the amount of penetration into the sample caused 
by a weight; it  is calibrated by following the expansion with temperature of 

W E I G H T  T R A Y  9 
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L V D T  CORE 
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TUBE 

ENVIRONMENTAL 
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Fig. 2. 

'2 
Schematic diagram of Perkin-Elmer TMS- .1. 
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materials whose coefficients of expansion are accurately known. Because of the 
float suspension, the mass required on the weight tray to cause the probe to just 
touch the surface of a sample will be between 2.1 and 2.8 X kg; the exact 
value depends on the height of the sample. Since sideways motion of the probe 
during loading must be minimized, selection of a "good" sample tube is essential 
to the experiments. A suitable criterion appears to be that the angle between 
the plane of the base of the sample tube and the probe's penetration direction 
is within 0.1" of 90°. Selection was accomplished using a cathetometer and 180" 
rotations of the sample tube. To further minimize sideways probe excursions, 
a specially designed probe-centering guide was spring mounted to the sample 
tube. Finally, the tip of a standard penetrometer probe was ground to a radius 
R = 1.5 X m. 

Samples 

The samples studied in the present paper are listed in Table I. They include 
four plastic materials of high modulus, one urethane elastomer of intermediate 
modulus, and three common elastomers of lower modulus. The urethane elas- 
tomer was prepared by reacting an isocyanate-terminated polyether prepolymer 
(Adiprene L-100 R) with 4,4'-methylenebis-2-chloroaniline curing agent for 4 
hr a t  71"C.I6 Since the surface of the sample which is indented by the quartz 
probe should be as smooth as possible and should be parallel to the bottom sur- 
face which rests on the bottom of the sample tube, careful attention must be paid 
to the cutting of samples. For materials cast from sheets (samples I1 and IV in 
our case) or molded with flat and parallel sides (V-VIII), no such problem exists. 
When a glassy sample must be cut from the inside of a block of material (I and 
111), it has been found that a water-cooled Buehler Isomet cutoff wheel can be 
used to achieve the required smoothness and parallelism of top and bottom 
surfaces. The thickness ( H )  of the samples is also listed in Table I; the width 
and length were usually chosen to be the maximum allowed by the sample tube, 
which is approximately 0.008 m by 0.008 m. 

As mentioned earlier, the choice of thickness H for the samples is extremely 
important. It is chosen such that for pmax, the maximum penetration, Rp,,,/H2 
is less than This ensures that the corrections for finite H shown in eq. (3) 

TABLE I 
Samples Studied 

Sample Trade name Source H,  m 

I Acetal Delrin 500 du Pont 0.0056 

111 Poly(arylsu1fone) Astrel360 Minnesota Mining and 0.0058 

IV Polycarbonate Lexan General Electric 0.0095 
V Urethane elastomer Adiprene L-100 du Pont 0.0076 

VI Fluorocarbon Viton V-747 du Pont-Parker 0.0127 

VII Nitrile elastomer Nitrile Rubber B. F. Goodricb-Parker 0.0127 

VIII Silicone elastomer GE-5601 General Electric 0.0127 

I1 PMMA Plexiglas Rohm & Haas 0.01 

Manufacturing 

Moca 

elastomer 

N-219-7 
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become unimportant and the theory derived assuming an infinite sample 
thickness can be safely used. 

In principle, corrections such as those shown in eq. (3) could be used to obtain 
values of compliance when H is finite; however, in practice a number of dif- 
ficulties become apparent. The most important of these comes from the fact 
that eq. (3) was derived assuming a frictionless surface between the sample tube 
and the bottom of the ~amp1e.l~ Watersg has shown that large differences occur 
in indentation when comparing a nonlubricated and lubricated interface for finite 
H samples. In addition for a well-lubricated interface, problems from lateral 
movement of samples under load can become bothersome. On the other hand, 
whenever the infinite thickness assumption applies, there is no difference be- 
tween lubricated and nonlubricated  interface^.^ This observation allows us to 
increase the interface friction by putting a very thin layer of putty under samples 
so lateral movement can be reduced. An added benefit of the use of wider and 
thicker samples is in minimizing “buckling” and “settling” problems. 

PROCEDURE AND DISCUSSION 

By determining p ( t ) ,  the penetration at time t caused by a weight W, eqs. (4) 
and (5) can be used to determine D(t ) .  To obtain this penetration, one normally 
would lower the probe until it just touches the surface of the sample (zero-weight 
condition) and then measure the change in probe position caused when a weight 
W is applied. Since it is well known2 that numerous problems exist in obtaining 
a zero-weight condition, a “contact weight” approach is used. After the sample 
is placed on the sample holder, mass is carefully added to the weight tray until 
the probe position is at equilibrium when just touching the sample. It is possible 
to determine the mass within approximately kg since the mass necessary 
to achieve equilibrium varies with sample height due to the float suspension. 
Once this mass is determined, the probe is raised off the sample and a disc of mass 
slightly larger than the zero-weight mass is placed symmetrically on the weight 
tray. At a time t = 0, the probe is lowered to the sample and the base of the TMA 
tapped gently to assure equilibrium. The contact weight Wc is determined from 
the excess mass of the disc over the zero-weight mass. After a time t o ,  a larger 
weight WL ranging from 1.96 X to 1.96 newtons is added symmetrically to 
the weight tray so that the major weight WM = WL + WC. 

For our experiments the maximum allowable value of WL was determined 
either by our previous requirement that Rp/H2 I 0.001 or by the maximum mass 
allowed for the instrument (0.2 kg). The change in penetration during the ex- 
periment is recorded with a Texas Instruments X-t recorder from t = 0 until t 
= 2to. Note that it is probably good practice to lubricate the top of elastomeric 
samples whenever possible and to tap the TMA base gently after adding a value 
of WL. These steps ensure that any frictional resistance to penetration is min- 
imized. For the present samples, however, these precautions were found to be 
unnecessary. Even in the silicone elastomer, which has a very high surface 
friction, lubrication with soapy water plus gentle tapping made very little dif- 
ference in the results. 

To analyze the above experiments, define a strain ~ ( t )  = [ p ( t ) I 3 l 2 .  Equation 
(4) can then be rewritten as follows: 
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where C1 = 4(1 - ~ 8 ) / ( 3 R l / ~ )  and C2 = 4(1 - UZ)DQ/(3R1”). The loading history 
of this experiment and the corresponding strain history can then be represented 
as shown in Figure 3. Using linear viscoelasticity, the strains at times t o  and 2to 
are given by 

(7) 

(8)  

(9) 

For the present experiments, t o  is chosen to be 30 sec. By proper choices of 
WM/WC the first term on the right-hand side of eq. (9) is made insignificant 
compared to the second term. For example, for the hard plastics D(60) - D(30) 
I D(30)/30, so WMIWC is chosen to be 2 5  ensuring that the first term is unim- 
portant. For the rubbery materials typically D(60) - D(30) 5 D(30)/5,  so 
WMIWC is chosen to be 230. Equations (7) and (9) can then be manipulated 
to obtain 

4 t o )  = [Cl D(t0)  + C2l wc  

t(2to) = [Cl D(2to) + C2l w c  + [Cl D(2to - to )  + C,l[WM - Wcl 
t(2tO) = ClWC[D(2tO) - D(tO)] -k [cl D(t0)  -k c 2 1 w M  

(10) 
1 1 - u,$ -- 

- (1 - UZ)DQ 
D(30)  - (4/3)  R ll2d 3/2 

(WM2/3 - Wc2/3)3/2 

where d = ~ ~ ( 6 0 )  - pc(30),  the experimentally measured difference in pene- 
tration between 30 and 60 sec. For D(30) >> DQ, eq. (10) becomes 

3 
1 4  

- ( 1  - u‘$)(wM2/3 - Wc2/3)3/2 

(11) -- 
D(30) - R l / Z d 3 / 2  

0 ‘0 

1 3  

Fig. 3. Loading and strain history for present experiments. 
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Notice that the parameter obtained from the above analysis is D(t0) even 
though the experimentally measured quantity is the difference in penetration 
between times to and 2to. Also note that the factor-of-two difference between 
these times was not accidental; the analysis based on linear viscoelasticity only 
works for this factor of two. It should also be pointed out that in the 30 sec before 
W,,, is added, the TMA base can be gently tapped to assure a good equilibrium 
probe position. This is because the data generated for the first 29+ sec are not 
used in the analysis. 

Equations (10) and (11) are the equations used to analyze the data in this 
paper. For quartz,17 DG' = 7.17 X 1O'O pascals and V Q  = 0.16. Since D-l for 
unfilled plastics is typically less than 3 X lo9 pascals, the difference between eqs. 
(10) and (11) is usually less than 5%. With R = 1.5 X meters, eq. (10) 
gives 

5.16 x 10-2d312 - 1.36 X ( WM2/3 - Wc2/3)3/2 

In this equation d is in meters, WM and Wc are in newtons, and D-' is obtained 
in pascals (1 pascal = 1.45 X 

It is important to remember that eqs. (lo)-( 12) explicitly require that a ma- 
terial is linear. In other words, if the compliance obtained depends on the major 
load used, thereby indicating nonlinear behavior, the assumptions used in de- 
riving these equations are invalid. Thus, we can check the linearity of a material 
by obtaining D-' for a number of different values of WL. 

Table I1 summarizes the calculations used for obtaining the 30-sec tensile 
compliance D of the unfilled polycarbonate sample. For this material the contact 
weight used was 6 X newtons, and seven major weights ranging from 2.55 
X to 1.96 newtons were used. This allowed the linearity of the material to 
be checked for two orders-of-magnitude change in weight. The values of dexp 
= pgp(60) - pFp(30) shown are the experimental differences in penetration and 
represent the average of two runs. Before we can obtain the d used in eq. (12), 
we must subtract corrections for stiffness of the instrument. The reasons for 
this are obvious from Figures 1 and 2. Whenever mass is added to the weight 
tray, there is going to be some heretofore unaccounted for compression of all 
elements from the point marked a near the bottom of the probe up to the LVDT 

psi). 

TABLE I1 
30-Sec Tensile Compliance Determination for Unfilled Polycarbonate: WC = 6 X 

W M ,  10-2 2.5 5.58 10.4 20.2 49.6 98.6 196.6 

dexP, 10C7 m 2.8 5.7 9.1 14.9 29.0 46.5 77.1 

dS, m 0.50 1.03 1.75 2.9 5.7 9.1 15.0 

d, m 2.3 4.67 7.35 12.0 23.3 37.4 62.1 

Newton 

newton 

f0.13 f0.25 f0.37 f0.5 f0.75 f0.9 f1.3 

f0.12 f0.25 f0.4 f0.4 f0.5 f0.9 f1.3 

f0.2 f0.4 f0.5 f0.6 f l  f1.3 f 2  
D-1, 10+9 1.94 2.00 2.23 2.27 2.21 2.22 2.11 

Weighting 1 1.2 1.5 2 2 3 3 
pascals f0.3 f0.25 f0.2 f0.15 f0.15 f O . l  f O . l  
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core as well as extension of the sample tube, etc. These will contribute to the 
measured penetration and must be corrected for before values of compliance can 
be obtained from eq. (12). 

These stiffness corrections were determined using materials of known com- 
pliance (aluminum, quartz). The corrections are shown in Figure 4 with ap- 
proximate uncertainties in the stiffness corrections indicated. The data shown 
did not change appreciably over a six-month time period. The appropriate 
stiffness corrections d s  = p& - p$ are obtained from Figure 4 and are listed in 
Table 11. These corrections turn out to be important only for low-compliance 
(high modulus) samples and are the reason for the technique being limited to 
a maximum D-l of approximately 5 X 109 pascals. After subtracting ds from 
d e x p ,  the resulting values of d together with a value for Poisson’s ratio18J9 vs of 
0.38 are used in eq. (12) to obtain the values of D-l shown in the table. Within 
experimental error the material is quite linear for the range of weights available. 
The uncertainties shown are predictably larger for the smaller values of pene- 
tration. With weighting factors which are inversely proportional to the uncer- 
tainties (see table), a weighted average value for D-l of (2.16 f 0.1) X lo9 pascals 
is calculated. 

Similar experiments were carried out on the other materials listed in Table 
I. Due to the requirement that R p / H 2  < 0.001, the maximum loads used were 
2 newtons for the hard plastics, 0.5 newton for the urethane elastomer, 0.2 newton 
for the fluorocarbon and nitrile elastomers, and 0.1 newton for the silicone 
elastomer. Within experimental error all materials were linear over the entire 
weight range used, except the poly(arylsu1fone) and the acetal. These were linear 
up to  1 newton but showed indications of a slight drop in D-l (-20%) for the 

I I I I I 1 

0 ?L c / 

/ 
/ 

I I I I I I 
10-3  10-2 l o - ’  1 

w ,  N 
Fig. 4. Plot of instrumental stiffness corrections vs load used. 
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highest load available (1.96 newton). This is not surprising since a sufficient 
load must eventually cause a material to yield and therefore become nonlinear. 
In fact, plastic deformation can be expected to become important when the mean 
pressure P, between the spherical indentor and the sample becomes approxi- 
mately equal to the compressive yield Y, of the material.20 P,,, is given by 

16W P, = - 

For hard plastics with D-I - 3 X lo9 pascals and W - 2 newtons, eq. (13) gives 
P, - 9 X lo7 pascals. Since Yc - lo8 pascals for the plastics studied in the 
present paper,21 some nonlinearities (decrease in D-l) might be anticipated at  
the higher loads used. 

The TMA-derived values of D-l for the materials studied in the present paper 
are listed in Table 111. For the acetal and the poly(arylsu1fone) samples, only 
the linear data ( W, = 0.025-0.96 newton) were used. The calculations depend 
on a knowledge of Poisson's ratio u for these materials. For the rubbery mate- 
rials, one can safely assume Y = 0.5. As mentioned above, literature values of 
u exist for the polycarbonate.18J9 For PMMA, u = 0.38 f 0.03.18J9822923 For the 
acetal, the poly(arylsulfone), and any other plastics which have unknown values 
of u,  the calculated values of compliance must obviously have greater uncer- 
tainties than cases where u is known. With the a s s u m p t i ~ n ~ ~ J ~ ~ ~ ~ - ~ ~  that most 
plastics have a u ranging from approximately 0.3-0.4, we obtain 1 - u2 = 0.875 
f 0.035. This uncertainty leads to the larger estimated errors in D-' listed in 
Table I11 for the acetal and the poly(arylsu1fone). 

To check the TMA values of compliance obtained in Table 111, we make the 
assumption that D- l=  E, the tensile modulus, and thus compare D-l with values 
of E obtained from other techniques. For the plastic materials, use is made of 
literature values of E obtained from stress-strain curves.z1 For the other ma- 
terials, values of the 30-sec stress-relaxation modulus obtained in our laboratory 
are ~ s e d . ~ ~ , ~ ~  The resulting comparisons, summarized in Table 111, indicate that 
the TMA results correlate extremely well with results from other techniques. 

As pointed out above, nonlinearities will often occur a t  the higher values of 
WM due to plastic deformation. In addition, sideways slippage of the probe can 

TABLE 111 
Comparisons of TMA Compliance with Modulus Measured from Other Techniques 

D - ~ T M A  (30 sec), Estress-strain, Estress-relax (30 sec), 
Material pascals pascals pascals 

Acetal (3.2 f 0.35) X lo9 3.6 x 109 a 

PMMA (3.06 f 0.15) X lo9 3.0 x 109 a 

Poly(arylsu1fone) (2.7 f 0.3) X lo9 2.5 x 109 a 

Polycarbonate (2.16 f 0.1) x 109 2.3 x 109 a 

Urethane elastomer 
Fluorocarbon elastomer 
Nitrile elastomer 
Silicone elastomer 

a Reference 21. 
Reference 26. 
Reference 25. 

(6.04 f 0.3) X lo7 
(6.68 f 0.3) X lo6 
(5.72 f 0.3) X lo6 
(3.24 f 0.2) X lo6 

(6.0 f 0.3) X lo7 
(6.0 f 0.3) X lo6 
(5.2 f 0.3) X lo6 
(2.9 f 0.2) X lo6 
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be more bothersome at the higher values of WM. For these reasons and in the 
interest of conserving material, it is usually sufficient for routine application of 
the TMA technique to obtain data for three or four of the smaller values of WM 
(e.g., WM = 0.05,0.1,0.2 newton). This will allow the linearity of the material 
to be confirmed. This confirmation is crucial since the theoretical equations 
are valid only for a linear material. 

CONCLUSIONS 
Using the techniques described in this paper, a commercial thermomechanical 

analyzer can be used to obtain estimates of the tensile compliance for polymeric 
materials ranging from soft rubbers to hard plastics. Since a typical sample 
configuration is a cube with sides approximately 8 mm long, sample preparation 
is relatively simple and only small amounts of material are necessary for the 
experiments. This implies that the methods of this paper are particularly useful 
for situations either where limited amounts of material are available for testing 
or where the material is relatively expensive. The data needed to determine a 
material’s compliance can be generated relatively quickly (Fig. 3), data analysis 
is quite easy and straightforward (Table 11), and the equipment needed is rela- 
tively inexpensive and available in many laboratories. 

The methods described here have a number of advantages over conventional 
hardness tests. One major advantage is that quantitative compliance values 
are determined. In addition, the linearity of the material can be verified. Al- 
though nonlinearities may result from the material properties, they can also come 
from a number of experimental difficulties or theoretical oversights. Thus, this 
configuration of linearity can be both useful and reassuring. 

Lagasse, and A. M. Lindrose. 
The author would like to acknowledge helpful discussions with G. L. Cessac, J. G. Curro, R. R. 
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